Factors influencing performance in gymnastics vaulting--- computer simulation models

- Reporter : Hui-Chieh Chen
- Adviser : Bruce Cheng
Outline

- Introduction
- Literature review
- Summary
- Future directions
Introduction

- **Vault**
 - **Continuous rotation**
 - the somersault rotation continues in the same direction (e.g. handspring vault)
 - **Counter rotation**
 - the direction of rotation is reversed during contact with the horse (e.g. Hecht vault)
Introduction

- The five phases of Hecht vault

(Takei et al., 2000)
Introduction

- The ability to perform a vault depends on several factors
 - the pre-flight parameters at horse contact
 - the elastic properties of the horse and the gymnast
 - the joint torques exerted while in contact with the horse

(king et al., 1999)
Sprigings et al., 1997

- Two-segment model
- Without using shoulder torque during horse contact phase
Literature review (1)

- Arm fixed
- High horizontal velocity is needed
- In practice, gymnasts use arm circling in post-flight to aid rotation and land at a suitable angle
Literature review (2)

- Yeadon et al., 1998
 - Pre-flight characteristics of Hecht vaults
 - two-dimensional video analysis
 - gymnasts performing the Hecht vault had longer, lower and faster preflights with slower rotation at horse contact compared to handspring somersault vaults.
Literature review (3)

- king et al., 1999
 - Two-segment simulation model
 - The Hecht vault required
 - A low trajectory of the mass centre during pre-flight
 - A low vertical velocity of the mass center and a low angular velocity of the body at horse contact.
Literature review (3)

- The handspring somersault required
- A high pre-flight trajectory
- A high angular velocity of the body and a high vertical velocity at horse contact.
Takei et al., 2000

- The mechanical variables that govern success of the Hecht vault
- 122 male gymnasts at the 1995 World Gymnastics Championships
- Correlational analysis was used to establish the strength of the relationship between the mechanical variables identified in the model and the judges’ scores
- Significant correlations ($P < 0.005$)
Important determinants:

- large horizontal and vertical velocities at take-off from the board and the horse
- large vertical and angular distances of pre-flight
- large vertical impulses of high force and short duration exerted on the horse contact and the resulting large changes in vertical velocity
- large horizontal and vertical distances and long times of post-flight
king et al., 2005

- Two-segment models ignore
 - the effect of the hands, shoulder torque
 - elasticity of the horse and gymnast
 - changes in the hip and knee angles during the contact phase

Thus, it is necessary to use models with more segments.
Literature review (5)

- Five-segment models of the Hecht vault
- Hand, arm, trunk+head, thigh and shank+foot
- Massless non-linear springs
 - Arm-horse interface
 - Glenohumeral joint
-Torque generator
 - Shoulder extensor
Literature review (5)

- Customised to a elite gymnast
- Segmental inertia parameters
- One performance was recorded by two camera (200Hz and 50Hz)
- Strength measurements was taken by an isovelocity dynamometer
- Autolev
Input
- Contact with the vaulting horse:
 - mass center velocity, orientation of each segment, angular velocity of each segment
 - initial activation, onset time, ramp time, final activation level for the torque generator

Output
- takeoff from the vaulting horse:
 - whole body angular momentum about the mass centre
 - mass centre velocity
 - orientation and angular velocity of each segment
The overall agreement between the actual performance and the matching simulation was sufficiently good to allow the subject-specific simulation model to be used.

Potential limitation of simplicity:
- The assumption of using rigid links
- The lack of a rigid hand segment and wrist joint
- The lack of active forces to resist movement at the shoulder joint
- The lack of shoulder elasticity in line with the body has only a small effect
Literature review (5)

- **Fixed hip and knee angle**

Comparison of actual performance and simulations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Actual performance</th>
<th>Matching simulation</th>
<th>Fixed hip and knee angles simulation</th>
<th>No hands</th>
<th>No shoulder torque simulation</th>
<th>Maximum shoulder torque simulation</th>
<th>Stiff shoulder simulation</th>
<th>Two-segment simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_g (ms$^{-1}$)</td>
<td>4.01</td>
<td>4.55</td>
<td>4.48</td>
<td>4.56</td>
<td>4.49</td>
<td>5.03</td>
<td>4.22</td>
<td>3.84</td>
</tr>
<tr>
<td>v_g (ms$^{-1}$)</td>
<td>1.67</td>
<td>1.78</td>
<td>1.85</td>
<td>2.18</td>
<td>1.80</td>
<td>1.36</td>
<td>1.16</td>
<td>2.75</td>
</tr>
<tr>
<td>h_g</td>
<td>-17.5</td>
<td>-16.9</td>
<td>-16.2</td>
<td>-14.3</td>
<td>-15.4</td>
<td>-17.9</td>
<td>-5.6</td>
<td>-6.7</td>
</tr>
<tr>
<td>t (s)</td>
<td>0.169</td>
<td>0.155</td>
<td>0.152</td>
<td>0.196</td>
<td>0.155</td>
<td>0.147</td>
<td>0.153</td>
<td>0.000</td>
</tr>
<tr>
<td>$d_{l_{max}}$ (m)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>$d_{r_{max}}$ (m)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>$d_{g_{end}}$ (m)</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>t_r (deg)</td>
<td>10</td>
<td>5</td>
<td>-1</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>s_a (deg)</td>
<td>78</td>
<td>71</td>
<td>67</td>
<td>99</td>
<td>72</td>
<td>63</td>
<td>74</td>
<td>137</td>
</tr>
<tr>
<td>l_a (deg)</td>
<td>23</td>
<td>18</td>
<td>21</td>
<td>33</td>
<td>26</td>
<td>18</td>
<td>67</td>
<td>60</td>
</tr>
</tbody>
</table>
Literature review (5)

- Fixed hip and knee angle
 - Changes in the hip or knee angles while in contact with the horse doesn’t affect greatly
 - Not necessarily require separate segments for the thighs and lower legs + feet
Literature review (5)

- No shoulder torque

Comparison of actual performance and simulations

<table>
<thead>
<tr>
<th>Variable</th>
<th>Actual performance</th>
<th>Matching simulation</th>
<th>Fixed hip and knee angles simulation</th>
<th>No hands simulation</th>
<th>No shoulder torque simulation</th>
<th>Maximum shoulder torque simulation</th>
<th>Stiff shoulder simulation</th>
<th>Two-segment simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_g (ms$^{-1}$)</td>
<td>4.01</td>
<td>4.55</td>
<td>4.48</td>
<td>4.56</td>
<td>4.49</td>
<td>5.03</td>
<td>4.22</td>
<td>3.84</td>
</tr>
<tr>
<td>v_g (ms$^{-1}$)</td>
<td>1.67</td>
<td>1.78</td>
<td>1.85</td>
<td>2.18</td>
<td>1.80</td>
<td>1.36</td>
<td>1.16</td>
<td>2.75</td>
</tr>
<tr>
<td>h_g</td>
<td>-17.5</td>
<td>-16.9</td>
<td>-16.2</td>
<td>-14.3</td>
<td>-15.4</td>
<td>-17.9</td>
<td>-5.6</td>
<td>-6.7</td>
</tr>
<tr>
<td>t (s)</td>
<td>0.169</td>
<td>0.155</td>
<td>0.152</td>
<td>0.096</td>
<td>0.155</td>
<td>0.147</td>
<td>0.153</td>
<td>0.000</td>
</tr>
<tr>
<td>$d_{h_{\max}}$ (m)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>$d_{v_{\max}}$ (m)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>d_{end} (m)</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>tr_a (deg)</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>s_a (deg)</td>
<td>78</td>
<td>71</td>
<td>67</td>
<td>99</td>
<td>72</td>
<td>63</td>
<td>74</td>
<td>137</td>
</tr>
<tr>
<td>l_a (deg)</td>
<td>23</td>
<td>18</td>
<td>21</td>
<td>33</td>
<td>26</td>
<td>18</td>
<td>67</td>
<td>60</td>
</tr>
</tbody>
</table>
No shoulder torque

- The matching simulation used 30% maximal shoulder torque
- the shoulder torque used during the contact phase had only a small effect
No hands

<table>
<thead>
<tr>
<th>Variable</th>
<th>Actual performance</th>
<th>Matching simulation</th>
<th>Fixed hip and knee angles simulation</th>
<th>No hands simulation</th>
<th>No shoulder torque simulation</th>
<th>Maximum shoulder torque simulation</th>
<th>Stiff shoulder simulation</th>
<th>Two-segment simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_g (\text{ms}^{-1}))</td>
<td>4.01</td>
<td>4.55</td>
<td>4.48</td>
<td>4.56</td>
<td>4.49</td>
<td>5.03</td>
<td>4.22</td>
<td>3.84</td>
</tr>
<tr>
<td>(v_g (\text{ms}^{-1}))</td>
<td>1.67</td>
<td>1.78</td>
<td>1.85</td>
<td>2.18</td>
<td>1.80</td>
<td>1.36</td>
<td>1.16</td>
<td>2.75</td>
</tr>
<tr>
<td>(h_g)</td>
<td>–17.5</td>
<td>–16.9</td>
<td>–16.2</td>
<td>–14.3</td>
<td>–15.4</td>
<td>–17.9</td>
<td>–5.6</td>
<td>–6.7</td>
</tr>
<tr>
<td>(t (s))</td>
<td>0.169</td>
<td>0.155</td>
<td>0.152</td>
<td>0.096</td>
<td>0.155</td>
<td>0.147</td>
<td>0.153</td>
<td>0.000</td>
</tr>
<tr>
<td>(d_{\text{limax}} (\text{m}))</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
<td>0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>(d_{\text{max}} (\text{m}))</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>(d_{\text{aend}} (\text{m}))</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(d_{\text{end}} (\text{m}))</td>
<td>–0.02</td>
<td>–0.02</td>
<td>–0.02</td>
<td>–0.02</td>
<td>–0.02</td>
<td>–0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(tr_a (\text{deg}))</td>
<td>10</td>
<td>5</td>
<td>–1</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(s_a (\text{deg}))</td>
<td>78</td>
<td>71</td>
<td>67</td>
<td>99</td>
<td>72</td>
<td>63</td>
<td>74</td>
<td>137</td>
</tr>
<tr>
<td>(l_a (\text{deg}))</td>
<td>23</td>
<td>18</td>
<td>21</td>
<td>33</td>
<td>26</td>
<td>18</td>
<td>67</td>
<td>60</td>
</tr>
</tbody>
</table>
Literature review (5)

- No hands
 - contact time \Downarrow angular momentum \Downarrow
 - the angular momentum at takeoff (backwards somersault rotation) was 15% smaller \rightarrow 15° less backwards rotation than the matching simulation
Literature review (5)

Stiff shoulders

<table>
<thead>
<tr>
<th>Variable</th>
<th>Actual performance</th>
<th>Matching simulation</th>
<th>Fixed hip and knee angles simulation</th>
<th>No hands simulation</th>
<th>No shoulder torque simulation</th>
<th>Maximum shoulder torque simulation</th>
<th>Stiff shoulder simulation</th>
<th>Two-segment simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_e (ms$^{-1}$)</td>
<td>4.01</td>
<td>4.55</td>
<td>4.48</td>
<td>4.56</td>
<td>4.49</td>
<td>5.03</td>
<td>4.22</td>
<td>1.16</td>
</tr>
<tr>
<td>v_e (ms$^{-1}$)</td>
<td>1.67</td>
<td>1.78</td>
<td>1.85</td>
<td>2.18</td>
<td>1.80</td>
<td>1.36</td>
<td>1.16</td>
<td>2.75</td>
</tr>
<tr>
<td>h_{tg}</td>
<td>-17.5</td>
<td>-16.9</td>
<td>-16.2</td>
<td>-14.3</td>
<td>-15.4</td>
<td>-17.9</td>
<td>-17.9</td>
<td>-17.9</td>
</tr>
<tr>
<td>t (s)</td>
<td>0.169</td>
<td>0.155</td>
<td>0.152</td>
<td>0.096</td>
<td>0.155</td>
<td>0.147</td>
<td>0.153</td>
<td>0.000</td>
</tr>
<tr>
<td>$d_{l_{max}}$ (m)</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.08</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>$d_{r_{max}}$ (m)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>$d_{s_{max}}$ (m)</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>$d_{e_{end}}$ (m)</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>$t_{r_{e}}$ (deg)</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>s_{a} (deg)</td>
<td>78</td>
<td>71</td>
<td>67</td>
<td>99</td>
<td>72</td>
<td>63</td>
<td>74</td>
<td>137</td>
</tr>
<tr>
<td>l_{a} (deg)</td>
<td>23</td>
<td>18</td>
<td>21</td>
<td>33</td>
<td>26</td>
<td>18</td>
<td>67</td>
<td>60</td>
</tr>
</tbody>
</table>

- **35% ↓**
- **67% ↓**
Stiff shoulders
- 50% less rotation
- had a large effect on performance
Shoulder angle

- Initial shoulder angle at touchdown → backwards rotation during the contact phase
- Handspring is possible
Implication of the result

- confirmed that the use of shoulder torque plays a minor role in vaulting performance
- having appropriate initial kinematics at touchdown is essential
- factors such as shoulder elasticity and the hands which have previously been ignored also have a substantial influence on performance.
Summary

- A simple model cannot be used to determine optimum approach velocity, but can be used to understand some of the basic principles involved in vaulting (King et al., 2005).

- More complex simulation models will match the actual performance better and have more insight into the vault.
Future directions

- Elite gymnasts in Taiwan
- Handspring vaults and high difficulty level vaults
- 11-segment simulation model
- 3D analysis
- Muscles or torque generators at more joints
Thanks for your attention!