Biomechanical aspects of running injuries

Reporter: Hui-Chieh Chen
Adviser: Bruce Cheng
2007.5.25

Introduction

• in US, 2002
 • 375 marathons & ~ 450,000 people completed at least one marathon
 USA Track and Field Road Running Information Center, 2003
 • ING Taipei International Marathon, 2005: 60,000
• People seeking medical attention during or immediately after completing the race: 2% to 8%
 • 17% of them musculoskeletal problems
 • muscle cramps, blisters, and acute ankle and knee injuries

Running Injury

• overuse injuries of the lower extremity
 • between 27% and 70% of recreational and competitive runners during any 1-yr period
• Type
 • stress fractures
 • medial tibial stress (shin splints)
 • chondromalacia patellae
 • plantar fasciitis
 • Achilles tendinitis
Factors causing running injuries

- Training
 - Excessive running distance or intensity
 - Rapid increases running distance or intensity
 - Surface and shoes
 - Stretching?
- Anatomical variables
 - Longitudinal arches (pes cavus)?
 - Ankle range of motion
 - Lower extremity alignment abnormalities
 - Tibia varum, rearfoot varus, Leg length discrepancies, Q-angle

Factors causing running injuries

- Biomechanical variables
 - Kinetic variables
 - Magnitude of impact forces
 - Impact loading rate
 - Magnitude of active (push off) forces
 - Kinematic variables (rearfoot)
 - The magnitude and rate of foot pronation

Introduction

- Biomechanics: Kinetics
 - Vertical ground reaction force vs. time curve for running.

Running cycle

- Stance phase
 - Foot strike
 - Mid-support
 - Take-off
- Swing phase
 - Follow-through
 - Forward swing
 - Foot descent
Kinetics

- Vertical impact forces, loading rates
 - Previous injured runners (both male and female) $> \text{uninjured}$
 (Hreljac et al., 2000)
 - Female runners with stress fracture $> \text{without}$
 (Ferber et al., 2002; Grimston et al., 1993)

Kinematics

- Magnitude and rate of foot pronation
 - Excessive pronation \rightarrow running injuries
 (Messier et al., 1988; Viitassalo et al., 1983)

Footstrike mid-stance later stance

- Early studies of running generally focused on the movement of individual joints or segments
- Coordination of motion between joints and segments
- Joint timing
 - Peak frontal plane rearfoot motion
 - Peak sagittal plane knee motion
coupling mechanics

- subtalar joint pronate
 - eversion, abduction, dorsiflexion of the calcaneus with respect to the talus
- tibial internal rotation
- knee flexion
 - occur relatively synchronously

EV/TIR ratio

- 1.72 for the loading phase of gait (Stacoff et al., 2000a,b,c)
- 1.42 for nine uninjured runners (McClay and Manal, 1997)
- there is a greater amount of eversion as compared to tibial internal rotation during running

EV/TIR ratio

- high arch group
 - tibial internal rotation \(\uparrow\) \(\rightarrow\) EV/TIR ratio \(\downarrow\)
 (Nigg et al., 1993; Nawoczenski et al., 1998)
 - eversion \(\uparrow\) \(\rightarrow\) EV/TIR ratio \(\downarrow\)
 (Williams et al., 2001)
- pronator group
 - tibial internal rotation \(\uparrow\) \(\rightarrow\) EV/TIR ratio \(\downarrow\)
 (McClay and Manal, 1997)
EV/TIR ratio

- **Injury site**
 - High EV/TIR ratios (more rearfoot eversion motion) → foot related injuries
 - Low EV/TIR ratios (more tibial motion) → knee related injuries

- **Contrary**
 - High EV/TIR ratios (low arches) → knee related injuries
 - Low EV/TIR ratios (high arches) → foot related injuries

(Nawoczenski et al., 1998; Williams et al., 2001)

Dynamical systems approach

- **previous research**
 - only addressed coupling at single occurrences during the gait cycle
 - Ex: maximal internal or external tibial rotation

- **continuous relative phase (CRP)**
 - normalized angular velocity plot against normalized angular position
 - phase angle
 - CRP angle (proximal — distal)

- **Hamill et al. (1999)**
 - the first to introduce the use of CRP into the biomechanics literature

- **Subjects (I)**
 - Q-angles > 15°: at a higher risk of lower extremity injury
 - Q-angles < 15°: at a lower risk of lower extremity injury

- **Subjects (II)**
 - Healthy
 - Patellofemoral pain
Dynamical systems approach

- **segment**
 - Thigh flexion/extension and tibial rotation: \((\text{ThF/E} \rightarrow \text{TibRot}) \)
 - Thigh abduction/adduction and tibial rotation: \((\text{ThAb/Ad} \rightarrow \text{TibRot}) \)
 - Tibial rotation and foot eversion/inversion: \((\text{TibRot} \rightarrow \text{Ft Ev/In}) \)
 - Femoral rotation and tibial rotation: \((\text{FemRot} \rightarrow \text{TibRot}) \)

Introduction

- **Ⅰ** Low Q-angle vs. high Q-angle
 - There is no statistically significant differences in the mean CRP and the variability in CRP between the groups for all couplings (\(P > 0.05 \))

- **Ⅱ** Healthy vs. PFP
 - About 15° of CRP variability similar to previous investigation
Healthy vs. PFP - CRP variability

- **Healthy**: out-of-phase, especially strong
- **PFP**: in-phase

Healthy vs. PFP
- **Healthy**
 - greater degree of *repeatability* of action in the PFP data
 - inflexible patterns of coordination
 - possible emergence of patellofemoral pain

Conclusions
- **Lower** CRP variability
 - an indicator of a *non-healthy state*
 - segment actions were *repeatable* within a very narrow range
 - enabled these individuals to accomplish this task with a minimum of pain
- **Higher** CRP variability
 - there were multiple combinations of coupling *patterns* that could be utilized
 - *no tissue is repeatedly stressed* which results from the relatively greater variability of joint couplings

Other literature
- Ferber et al. (2002)
 - CRP for EV/TIR
 - healthy group: more *in-phase* relationship
 - injured group: more *out-of-phase* relationship
- Stergiou et al. (2001)
 - CRP for EV - tibial abduction
 - Heel strike: out-of-phase
 - Midstance: in-phase
 - From midstance to toe-off: out-of-phase
Other literature

- DeLeo et al. (2004)
 - There are a number of limitations to the CRP approach
 - Many variables are not relatively sinusoidal
 - Whether the data should be normalized
 - The difficulty in interpreting the results as they relate to injury

- Heiderscheit et al. (2002)
 - Vector coding technique
 - Angle–angle diagram

Summary

- In terms of relative timing
 - There is synchrony between peakversion, peak tibial internal rotation and peak knee flexion, which takes place near mid-stance in healthy runners
 - Normal EV/TIR during running > 1
 - Does not lend insight into location of injury
 - CRP, vector coding and variability techniques have provided new perspectives in understanding running biomechanics

Future

- With larger subject numbers to further define the normal bounds of joint coupling
 - Other joint coupling relationships, including tibiofemoral and hip–knee coupling are needed
 - Prospective studies are needed to establish relationships between joint coupling and injury prevalence
Thanks for your attention!